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INTRODUCTION 
Many small or large rooms have concave surfaces. With improved building technology and fashions in 
architecture (blobs) problems due to these surfaces are encountered more and more. Some situations are 
described in literature [1,2,3]. In our consultancy work we had to deal with these situations e.g. in concert 
halls [4,5]. 
When sound is reflected from a concave surfaces the geometry of the surface will force the energy to 
concentrate. The sound pressure due to this focussing if mostly calculated by computer simulation 
techniques applied on a segmented shape or by a geometrical approximation. Both methods however fail in 
the focussing point, the result is not even close to the real value. 
To correctly estimate the sound pressure a wave extrapolation method is used, that will be presented here. 

WAVE EXTRAPOLATION 
Wave extrapolation uses the Huygens principle, developed by Christiaan Huygens in 1678 and later 
improved by Fresnal.The Huygens Principle states that every point on the primary wavefront can be thought 
of as an emitter of secondary wavelets. The secondary wavelets combine to produce a new wavefront in the 
direction of propagation. Fresnel extended the theory of Huygens in stating that the secondary wavelets 
mutually interfere. But it was Kirchhoff who put the Huygens-Fresnel principle on a sounder mathematical 
basis. 
From Green’s theorem the Kirchhoff integral can be derived: 
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It states that, with a sound source outside volume V, the sound pressure 
at point A inside V can be calculated from the sound pressure and 
particle velocity data on the surface S that is the boundary of V. 
In the integral above the sound pressure and particle velocity is 
assumed to be known and resulting from a source at distance r from the surface element dS. 
The distance between dS and A is given by D. The angles α and φ are the angles between the incident 
sound and the (outer)normal to dS and between the (inner)normal to dS and the vector to A from dS 
respectively. 
For λ>>r  and λ>>d  (far field) this can be simplified to: 
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This is known as the Fresnel-Kirchhoff diffraction formula.  
In case of wave propagation from a flat surface the Kirchhoff integral may be further simplified to the 
Rayleigh integral, either using the sound pressure data or the particle velocity data. Since we will calculate 
the reflection by extrapolating the wavelets on concave surfaces we will use the Kirchhoff integral. This is 
done by first calculating the wavefield from the source on the concave surface and then (without the source 
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Figure 1. Symbols used for the 
Kirchoff integral 
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and with the velocity at opposite phase) integrating the contributions of the wavelets over the concave 
surface, thus obtaining (only) the reflected sound. 
 

SPECULAR REFLECTION FROM A SPHERE 
We take a full sphere with radius R and describe it with the 
spherical coordinates ( )θφ,,r  and the surface elements 

θφφ ddRdS ⋅⋅⋅= sin2 .  
If the sound source is in the origin, the sound pressure at the 
sphere’s surface will be: 
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Integrating over the sphere will give the following (Kirchhoff) 
integral expression for the pressure in a point A inside the sphere: 
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For the source in the origin 1cos =α .  For point ( )0,0,0=A  an analytical solution is possible (D=R, 

1cos =ϕ ): 
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The amplitude of the reflecting wave in the center of the sphere is: 
λ
πp

pkPA

ˆ4
ˆ2 ==  (5) 

This amplitude corresponds roughly with the amplitude one would get if the reflected energy is distributed 
over an circular area with radius λ4

1 .  

Since all contributions of dS are in phase, this amplitude is proportional to the reflecting surface that 
contributes. For a hemisphere the amplitude in the center will be:  

pkPA ˆ= , or 22
2
12 ˆ kppeff =          (6) 

 

    

    

    
Figure 3. reflected sound pressure from a dome segment; R=10m, k=10 (f=500Hz); black=0, white 1≥ . 

Figure 2. co-ordinates used. 
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For a sphere fragment integrating φ  from 0 to mφ this will result in 
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In figure 3 some examples of the calculated pressure is given for different mφ . 

 
Clear interference patterns are visible. It is also clear that the energy will not concentrate in a single point. 
For smaller disk elements ( πφ 8

1≤m ) a “beam” appears that will widen due to diffraction, depending on 

frequency and size of the dome segment. The width of the reflected “beam” (between the two first pressure 
dips) at the focal point can approximated by )sin(/ mb φλ=  for πφ 2

1≤m .  

The “beams” can be approximated with Fraunhofer diffraction from a circular disk. Using for radius 

mRa ϕsin= , the pressure at distance r, with offset x from the axe, can be calculated from: 
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If one disregards the sidelobes, the main lobe of the 
Bessel function can be approximated by the given cosine 

(for ππ <<−
r

kax
). 

Figure 4 shows the calculated wave field from a small 
sphere segment, by extrapolation and by formula (8). 
Despite the differences in source position (for the sphere 
in the center and for Fraunhofer diffraction at infinity) the 
sound field is very similar. 
 
 
SPECULAR REFLECTION FROM A CYLINDER 
 
The reflected sound field from a cylinder can, as for the 
dome, be described by the Kirchhoff integral. 
The positions within the cylinder are described by 
cylindrical co-ordinates ),,( zr θ and the surface elements 

on the cylinder have dimension dzRddS θ= . The source 
is assumed in the center (0,0,0). 

We will define: 22 zRrs +=  and R= radius of the 

cylinder.  
For point A the distance to the radiating element dS will be 
D. The Kirchhoff integral will then be: 
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or assuming source and receiver in the far field ),( λλ >>>> Drs : 
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For A=(0,0,0) this can be simplified, by using srD = and 
D

R== ϕα coscos : 

∫∫∫ ∫
∞

∞−

+−∞

∞−

−∞

∞−

−

+
−=−=−= dz

zR

e
kRpjdz

D

e
kRpjdzd

D

eRpj
P

zRjkDjkDjk

A 2/322

2
2

3

2
2

2

0
3

22

)(
ˆˆ

ˆ
22π

θ
λ

 

This integral is solved in [6] (for )λ>R  
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Figure 4. Simulation of the reflected sound field (f=500 Hz, 

=λ 0,68 m) from:  

left: a sphere segment πϕ 32
1=m ,R=10 m (4) 

right: a disk a=1m (8) 
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for half a cylinder this will result in:  
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DIFFUSE REFLECTION FROM A SPHERE 
Non-specular reflections may have specific direction, depending on the surface structure, but if this is not the 
case, the directional characteristics of a Lambert radiation may be assumed. 
We assume that for diffuse reflections in each reception point there is random phase relation so we will add 
energy in stead of pressure. 
 
The Intensity of Lambert radiation is dependent on the angle ϕ  

with the normal to the radiating surface: ϕϕ cos0 ⋅= II  

We have a source in the center of a hemisphere, the incident 
intensity on the surface element dS of the hemisphere with radius 
R is: 
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Assuming all incident energy is reflected, the intensity in a point at angle ϕ  and distance D from  surface 
element dS  can be calculated from: 
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In the center of the hemisphere this reduces to )1cos,( == ϕDR : 
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DIFFUSE REFLECTION FROM A CYLINDER 
Firstly we will assume that the surface element on the cylinder is diffusely reflecting all energy. We will also 
assume Lambert radiation characteristics.  
The intensity in a point at angle ϕ  and distance D from  surface element dS  can be calculated from: 
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Where iI = the intensity of the incident wave: 2
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The total pressure results from integration over dS: 
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If we consider the pressure in the origin this reduces to )coscos,( 22
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it can be shown that the solution of this integral is: 
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Figure 6. Lambert radiation 
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SCATTERING BY DIFFUSERS 
In case of diffusers attached to the sphere or cylinder the 
question will be how much of the incident energy will be 
reflected specular and how much as Lambert radiation (see 
figure 7). 
The ratio of scattered (non-specular) energy to total energy is 
described by the scattering coefficient. This is one minus the 
ratio of specular reflected energy to total reflected energy, so: 
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E
s −= 1       (20) 

 
The total energy in the center can thus be calculated from the 
specular and diffuse contributions, for the hemisphere that will be: 
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The scattering coefficient can be measured or calculated, although calculating is not an easy task. In [7] for a 
number of diffusers the scattering coefficient is calculated using BEM (Boundary Element Method). The 
calculated scattering of some relatively good diffusers is given in figure 8. For good diffusers the scattering 
coefficient can reach values of approx. 0,9 for the high frequencies. That means that it is difficult to suppress 
specular reflections more than 10 dB (s=0,9). 
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Figure 8, the calculated scattering using BEM, from [7] 

 
OVERVIEW 
The increase L∆ in sound pressure level in the focal point compared to the SPL at 1 m from the source, in a 
hemisphere and a half-cylinder, can be calculated using the formulas given in the table below. 
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The relation between L∆ depending on radius R  and frequency is given in figure 9 for frequencies 250,500 
and 1kHz. For combined specular and diffuse reflections scattering coefficients 0.2,0.65 and 0.85 are 
assumed. 

Figure 7. The non-absorbed energy is either 
specularly reflected or scattered [7]. 



 Reflections of sound from concave surfaces   

ISRA 2007 SEVILLA  6 

 
CONCLUSIONS 
From the presented data we can conclude that: 
The (maximum) SPL in the focal point can easily predicted; for the sphere it is not dependent on the radius, 
for the cylinder it is. The focussing effect of the cylinder is much less then the sphere. 
The contribution of diffuse reflections to the SPL in the focus point is small compared to the influence of 
specular reflections. 
Since all diffusing objects still reflect part of their energy specular, the means of reducing focussing effects 
by diffusing objects are limited. Strong echo’s from hemispheres are likely to remain to some extent, even 
with good diffusion. Echo’s from cylinder shapes are easier to remove. 
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